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Nonlinear Dynamics of Microwave
Synthesizers—Stability and Noise

Sergio Sancho, Almudena Sugréfember, IEEEand Tomas Fernandez

Abstract—The nonlinear dynamics of microwave synthesizers __"® ['pp © M Fe O veo MO,
based on type-Il third-order loops is analyzed in this paper. Instead . 'm'
of using standard simplified models, realistic models are consid-
ered for the loop filter, phase detector (PD), and voltage-controlled FREQUENCY |q
oscillator based on experimental characterization. The new models DI\%’ER

enable the simulation of incidental frequency modulation and the
accurate prediction of the synthesizer operation ranges, including _ ) .
possible hysteresis phenomena. The stability of phase-locked solu-Fig- 1. Schematic of the frequency synthesizer.
tions is analyzed, enabling the prediction of possible chaotic be-

havior. For an accurate determination of the output spectrum, a e gystem feedback, often give rise to very complex nonlinear
phase-noise simulation is also carried out, considering the noise

contributions from the loop elements. The sidebands inherent to beha\{|or. Actually, some- vyorks 2], [3] relate.the pre-l PLL
the synthesizer solution are taken into account for this analysis. Al €quations to those describing the Josephson-junction supercon-
the above analysis strategy has been applied to a microwave synthe-ductor [4], for which the existence of chaotic attractors has been
sizer, operating in the 2-3-GHz band, with very good results. Two analytically demonstrated.
types of PDs are considered: the JK flip-flop PD and frequency ot of the studies on PLL nonlinear dynamics are devoted
E};ﬁ;réﬁgngﬁggggng?gefesuIt'ng loop performance in terms of sta- to type-l PLLs [2], [3]. In the case of type-Il PLLs, infinitum
hold-in ranges are theoretically obtained [1], [5], [6] due to the
presence of a second integrator in the loop. The fact that the syn-
thesizer is always in locked condition should also prevent any
hysteresis or instability phenomenon. However, this contradicts
|. INTRODUCTION the everyday observations of microwave-oscillator designers.

HE strict phase-noise specifications of current commy- The nonlinear analysis is the first step for a realistic predic-

nication systems usually make necessary the synthesi 18 of thel bgha_\n?r gf thﬁ m|crowav?hsyntht<)a S'\Zﬁ[r' t-l)_.hli non(;
microwave oscillators before their integration in a particul ear analysis, Introduced, among others, by VIterol [7] an
system. This frequency synthesis is carried out through gn.nemamat.al.[S] provided mvalgable information about the
phase-locked loop (PLL). The main elements of this loop, asi gsic operation of second- and third-order loops. However, even

from the voltage-controlled oscillator (VCO), are the pha§ a nonlinear analysis, the results may qualitatively differ from

detector (PD) (which may be analog or digital), loop filtertne experimental ones if oversimplified (.jescr.|pt|o_n_s are taken
the loop elements. Actually, when using simplified models

f ivi Fig. 1). F h -Noi i
and frequency divider (Fig. 1). For phase-noise reduction, tf;%r( the response of the PD (as a function of the phase differ-

convenience of using a type-Il (or higher) PLL has been sho ence between its two input signals), the prediction, for instance
1]. Actually, the type-Il third-order PLL, with an integrator e . . : '
[1] uaty yp I WI Inted f the incidental frequency modulation (FM) [1] is impossible.

in the filter loop (the other is provided by the VCO transfe locked dition. th del id tant f
function) is the most common type of synthesizer at microwave '0¢Ked condition, these models provide a constant frequency

frequencies. Although more poles may be added to the Ioggdacotr)stantkp])hasefshlftmthe VCdO IO l:.tput\:tvg?n gxpe:wre:\htal
filter for reference suppression, the type-ll third-order pposervations show a frequency moduiation ot this signal. In the

provides a good insight into the system nonlinear dynamics [ ectrum, this gives rise to sidebands, which are inherent to the
In the linear analysis of the synthesizer, the PD is model nthesizer solution. The variation in the actual nature of the
with a linear function. However, this simplifi’cation is only Va“dsteady—state solution may invalidate the stability predictions of
i pe standard linearization around a constant-phase solution. In

for small phase error between the two input signals. Thea{ + instabili fthe f dulated soluti lead
tual nonlinear nature of this and other elements, together wifif; Instabiiities ot he Irequency-moduiated solution may lea

to chaotic behavior [9]. On the other hand, the FM sidebands
influence the overall phase-noise behavior of the synthesizer
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system out of lock should enable an accurate prediction of ifee combination of equations from (3)—(6) provides the
operation ranges. In order to evaluate the influence of noise peaplace form of the general equation governing the synthesizer
turbations on the actual system solution, the phase-noise cordsinamics

butions of the loop elements, obtained from experimental char- P

acterization, have also been considered. The synthesizer phase- s8, = fvco [F(s)l <9i, _Oﬂ ) (7
noise analysis is carried out taking into account the actual os- N

cillating nature of the solution. This accurate prediction of thgince ¢,(t) only depends on time, the synthesizer can be
phase-noise spectrum should also avoid the usual laboratgydeled as a time varying (time dependent) third-order system
trial-and-error work before obtaining satisfactory result. For thgnose state variables are the VCO output phase and its first-
sake of generality, two different types of PD have been consighg second-order time derivativés,, f,, ,). This is the
ered: an analog mixer and a JK flip-flop PD. most general description of the synthesizer. Now the general

The paper is organized as follows. Section Il presents thghctions from (3)—(5) are going to be replaced with realistic
synthesizer equations and the element models that have bggjels.

used here, comparing the simulation results with those obtained
through traditional modeling. Section Il shows a parametr8. Description of the Filter

analysis of the synthesizer, with emphasis on the determinatior'n (4), the filter response is modeled with an ideal transfer

of its operating limits. Section IV analyzes the synthesizer stag, tion having a pole located exactly at the origin. However,
b'"t%' and tr;e presferr:ce of cr;]aot}c So'?}t'ons' Sgctlonhv 1S delvoFﬁﬂs location is not possible in practice, due to dc gain finiteness
to the analysis of the synthesizer phase-noise. The analysi§ Iy 4 asitics in the active filter. Actually, for this situation, the

particularized to a 2—3-GHz microwave synthesizer and, in eagy tem becomes a stabilibgnterfor the unlocked rotation so-
section, simulation results are compared with measurementqutions, as in a linear oscillator. In a more realistic description

of the filter, the pole will be slightly displaced from the origin,
[I. NONLINEAR MODELING OF THEMICROWAVE SYNTHESIZER  according to the actual element values. The ratio between the
two pole displacements remains, however, very small. The new

N . ~transfer function is given by
As shown in Fig. 1, the synthesizer is made up of a nonlinear

A. Synthesizer General Equations

PD, a loop filter, a VCO, and a frequency divider. The input- F(s) = s+ 1 8)
signalv;(t) is considered to be a sinusoidal waveform, given by 1273(s? + Bs 4+ C)
whereB andC are constant coefficients, calculated so that the
vi(t) = cos[6:(t)], with 6;(t) € St and% =w; (1) zero(atl/r)and pole (at/73) remain at the same positions of
dt (4). The second pole (very close to the origin) is estimated from
while the VCO output has the form th_e actual filter response. This pole i_s located@, C). As
will be shown, the value has a great influence on the system
vo(t) = cos[fs(t)], 6,(t) € S'. ) dynamics.

] . ) C. Description of the VCO Response
The output current of the PD is a nonlinear function of both the

input phase; and the output phas (divided byN) For an accurate simulation of the synthesizer behavior, a re-

alistic model of the VCO response versus the control voltage
6o() must be considered. This model must include all the saturation
i(t)="h [ei(t), OT} (3) and nonlinear effects observed in this circuit. The linear approx-
imation often considered in PLL analysis is valid for small vari-
In the particular case of a type-I third-order loop, the filteftions Of the control voltage(t), butin the general case, is in-
transfer function is given by accurate. As an example, the VCO employed here has been ex-
perimentally characterized, obtaining the frequency response of
s+ 1 Fig. 2. A curve of this type can be modeled with the following
(4)  equation:

Fs)= ———— .
(S) TQS(TgS + 1)
The pole ideally located at the origin provides high dc gain and Oo(t) = wo + kytghlh, v(t)] ©)
improves the phase-noise characteristic. The VCO oscillatesderek, andk., are fitting parameters ang, is the free-running

a frequency depending on the control voltage) angular frequency of the VCO. The modeled characteristic has

] been superimposed over the experimental one (see Fig. 2).
6o(t) = fycolv(t)] ®)
D. Description of the PD
The phase-detector output curréft) and the control voltage  Two different kinds of PD (i.e., analog and digital, respec-
v(t) are related by the filter transfer function tively) have been considered here: a frequency mixer and a JK
flip-flop, as an example of digital PD. The objective has been the
V(s) = F(s)I(s). (6) analysis and comparison of the overall system dynamics, when
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3 : , \ \ ‘ — integrator averages the PD output pulses. Taking into account
2ol N | this averaging of the current pulses, the JK PD has usually been
modeled with thesawtoothequation
281
i(t) = kap(t),  with (%) € S*. (12)
271
0l In this study, the sequential character of the output current has

been taken into account to enable a more accurate modeling.
25 ' ] The table of truthof the JK flip-flop provides the following
. piecewise-linear function:

Frequency Output (GHz)

24|
. . b, o,
231 / 1 in =h <9in? W, 91‘7171, N L
. — Estimated i, =+Ky, for 6, _, € (0, v) andd;, € (m, 27)
4 - ‘ s L s
218 2 4 6 8 10 12 14 ) o, . 6.,
Voltage Input {v) i, =Ky, for N € (07 7r) andw € (7r, 27r)

Fig. 2. Frequency response of the VCO versus the control voltage. The %n =in_1, for any other case. (13)
parameters of (9) are; = 5.7 10° rad/s,k, = 0.15 v}, wy = 2.1 - 27
10° rad/s. It is a discontinuous function with a memory. Note that the

output current depends on both the divider output plfgghl

using two different types of PDs, and the JK has been chosamd the reference phaég Its highly nonlinear dynamics gives
for modeling simplicity. The tristate comparator is also widelyise to many spurious terms, resulting from intermodulation.
used and will be the object of a future work. These spurious terms have a crucial influence on the synthesizer

1) Frequency Mixer:The frequency mixer is a nonlineardynamics, as will be shown.
element, giving rise to intermodulation products of the two
input frequencies. The products with highest amplitude cor-[ll. GLOBAL ANALYSIS OF THE SYNTHESIZER NONLINEAR
respond to the lowest intermodulation orders. For the sake of DYNAMICS

simplicity, in classic PLL analysis (even in nonlinear analysis), . . . . i
the response of the frequency mixer is generally limited to theIn this section, the general equation (7) governing the synthe

phase-difference term. In this approximation, it is assumed tRAFC" dynamics s particularized to the case of using a frequency

the phase-sum term is completely attenuated by the Iow—parlg'%(er ora JKPD.

filter. Under this assumption, the equation for the PD outpyt

: Synthesizer With an Analog PD—Frequency Mixer
current (3) is reduced to

In order to show the relevance of the phase-detector model

i(t) =h |:97‘ (#) - 9o(t)} in the system dynamics, both the simplified description of the
’ N frequency mixer given by (10) and the more accurate one given
0,(t) by (11) will be considered.
= ka cos {ei(t) TN } 1) Time-Invariant Case:When using the simplified descrip-
= g cos[(2)] (10) tion (10), the synthesizer equations can be globally expressed in
terms of the phase error
wherek, is the phase-detector output current af{d) is the g
.. . 1 di 1
so-calledphase error v+ Br+Cv=—— 4+ —1
In order to get some insight into the influence of the inter- 273 db - 727
modulation products, the term corresponding to phase addition = _nika d)sin(¢) + ka_ cos(¢)
has been included in the PD model AT2T3 L 7273
b(t) = == — “Loh[k,u(t 14
iW(t) = kg |:COS <9¢ — j9V_0> + cos <9i + 6—&)} . (11) o) N N ghlfu(0) (14

whereAw = Nw; — w,. The casesf\w > 0 andAw < 0

2) JK-Based PD:A JK flip-flop has been chosen as anmare symmetric, thus, onl¥ values makingAw > 0 will be
example of digital PD, due to its accurate detection of bottonsidered.
phase and frequency variations [1]. In this kind of detector, The system (14) is time invariant since its equations do not
there are two output levels. The output current is positive agepend explicitly on time. The state variables are given by
two cases: when the reference frequency is bigger than {lge ¢, ¢). Since the system is periodic i) every system state
output frequency divided by and, if the two frequencies is an element ofS* x R x R).
have the same value, when the reference signal leads th&/hen solving (14), the main interest is in finding the phase-
frequency-divided output signal in phase. In the opposite caskgked solutions and the parameter ranges for which these so-
the output current is negative. The filter capacitor is charged fltions exist. When writing the synthesizer equation in terms of
the positive level and discharged for the negative one. The filtidwe phase error [as has been done in (14)], these phase-locked
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. . . . . .. Coexistence, for the same parameter values, of a stable phase-locked solution
Fig. 3. Bifurcation diagram of the synthesizer when a frequency mixer is us P) and a stable rotation solution.

as a PD.

corresponding to the maximum frequency at which the VCO
an oscillate before saturation. Here, the maximum VCO output
II:{:rgequency iswo + ky [from (9)], thus, the maximum integer

solutions are given by a constant phase-error value ¢,.
Thus, they correspond to the equilibrium points (EPs) of t

time-i iant syst 14), which Iculated b ti i
(|(;)ne(}j|)n\;ar(|§ no)sxfl:c’h?smpr(ovizjevsv Ich are caleulated by equat product of the input frequency that can be followed by the VCO

IS Npaxwi = w, + k1. ThereforeN,,.x limits the bifurcation
diagram.
Up to now, (14) has only been solved for its EPs. However,

The existence of EPs is determined by the condition¢| < 1. for some pargmeter ranges, "’.‘“'.“e p§r|od|c solut|pn may also
found. This is a stable periodic orlit(t) of rotation type

Thus, the EPs or the phase-locked solutions do not exist 141 that has th ¢
all the parameter values. The parameters that will be constd: [4] that has the property
ered here are the PD currént and the division ordeN, both d)1w(t) >0 vt (17)
included in (15). When the conditiosin ¢| < 1 is fulfilled,
two different solutions are obtained, i.é4.,., ¢.s). These so- This solution has been represented in Fig. 4 for parameter values
lutions correspond to locked states of the system since the ff& kqy) for which it coexists with the EP. Note that great time
quency error is zero. The relation between both solutions isariations of the frequency error are obtained for this solution.
don = T — ¢os. It can be shown that one of the solutions, i.eSince the frequency error is always positive, the VCO output
don, 1S @ stable focus of node type amg, is an unstable so- frequency never locks tdlw;. Thus, the rotation solution will
lution of saddle type. Since one of the filter poles is very closmrrespond to an unlocked state of the system. The rotation so-
to the origin,¢,, will have a value close to zero for most of thdution typically originates at the saddle EP, through the non-
parameter-variation range. Its value will vary fast for parametansversal intersection of its stable and unstable manifolds [10].
values near the limit conditiofsin(¢)| = 1. This phenomenon occurs f@t,, N) values, forming a curve in
In the plane defined bly, andN, the curve delimiting the ex- the parameter plane that cannot be analytically obtained for the
istence of phase-locked solutions is obtained from the conditioomplex system (14). Along this curve (curve (b) of Fig. 3), the
[sin(¢)] = 1 periodic solutiong,(t) collides with the unstable EP. The phe-
nomenon is calledaddle connectiof2]-[4]. This provides the
To13C | k1 + Aw . . . .
kg = In . (16) lock-in border in the synthesizer operation. The two curves re-
2 ki — Bw spectively given by theaddle-noddifurcation [curve (a)] and
Note that sinceAw < k; [due to (9)], the quantity inside the the saddle connectiofturve (b)] define three different regions
logarithm is always positive. The curve given by (16) has beém the parameter plane. In region I, there are two EPs. In re-
represented in Fig. 3 [curve (a)]. Phase-locked solutions orgion Il, EPs and rotation solutions coexist and, according to the
exist on the left-hand side of curve (a), this curve providingystem initial values, convergence to an EP or a rotation solu-
the synthesizehold-in range. Along curve (a), a collision be-tion may be obtained, as shown in Fig. 4. In region Ill, there are
tween the stable and unstable ERs,,, ¢.s) takes place. This rotation solutions.
collision gives rise to the extinction or creation (according to As has been pointed out, the distance to the origin of the
the sense of variation of the parameter) of the two EPs insacond filter pole is a very sensitive parameter in the system
saddle-noddifurcation [10]. Note that foAw — ky, the cur- dynamics. Actually, the position of the stability borders greatly
rentk, tends to infinitum, which means that beyond this limitdepends on this parameter. Fore= 0, the saddle-nodebifur-
locking is not possible. This is due to the VCO saturation. Thaation curve lies on the horizontal axis and th@d-in range
parameteN can never increase beyond a maximum valiyg. becomes infinite, in agreement with analytical predictions from

To13C . k1 + Aw
In

. 1
2/%‘(1 /%‘1 — Aw ( 5)

sin(g) =
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simplified models [5], [6]. Thesaddle-connectioborder also x 10
approaches the horizontdl axis when the distance is de- ‘
creased. 12
The sequence of bifurcations obtained when increasifay
constantk, (following the horizontal line (A) of the bifurca- 10l
tion diagram of Fig. 3) is described below. Initially, the systemr
operates in region | and the solution trajectory evolves to thg 8
stable node. At this point, the PLL is locked.Nf is now in-
creased, the system enters region Il and the rotation solutic sk
appears and coexists with the EPs. However, since the systen \
moving from region |, its initial conditions are close to the stable Rotation /\
EP and the system remains locked. Continuing to incrifass 77 \
curve (a) is approached, the stable and unstable EPs appro:

dd/dt (ra

each other fast and eventually collide. In region lll, the EPs hav - e /
: . . Limit Cycl
disappeared and the system trajectory is attracted by the stal — e }k/
rotation solution, the synthesizer becoming unlocked. Now, i ~ °C " g 5 " “"”15
line A is followed in the inverse sense (from region lll to re- ¢ (rad)

gion 1), a hysteresis phenomenon is observed. Actually, when

reducing theN value, curve () is traversed, the two EPs reap- . . . .
L .. . ig. 5. Synthesizer based on a frequency mixer. Time-varying system.

pear, but the initial conditions, very close to the rotation solioexistence, for the same parameter values, of a stable phase-locked solution

tion, make the system trajectory converge to solutions of rotémit cycle) and a stable rotation solution (quasi-periodic). Inset: expanded
tion type. Thus, the system remains unlocked in a parameter fig¥ of the limit cycle.
gion for which locked solutions had previously been obtained.

However, asN continues to be reduced, the amplitude of the rehis assumption is valid for the whole range(&f;, N) values
tation increases and a collision with the unstable EP takes plaggt are usually covered in the performance of the synthesizer
at thesaddle-connectionurve [curve (b)]. After this collision, pased on the frequency mixer. Thus, the bifurcation diagram
the rotation is destroyed. The system enters region | and the fg-the system (18) has the same regions as the one shown be-
lution trajectory is attracted by the stable node (the only stalflsre (Fig. 3). It must also be noted that the rotation-type peri-
solution). When this happens, the system gets locked. odic solutions of the averaged system (14) become quasi-peri-
2) Time Varying CaseWhen the phase sum term, neglectegdic solutions of (18), with fundamental frequencies given by
in (10), is taken into account for the synthesizer analysis, impafre self-oscillation frequency [observed in the rotations of the
tant qualitative variations are obtained in its dynamics. Whejystem (14)] and the frequen@w;. The two types of more
considering this term, the synthesizer equation becomes  realistic solutions (limit cycle and quasi-periodic rotation) are
o di 1 shown in Fig. 5. Note that now the locked states are not EPs
v+ B+ Cv=— —+—1 in the spacegS' x R x R), but limit cycles surrounding the
727y dt - TaT3 EPs of (14). Thus, the output,(t) of the VCO in the locked

- _ mika [(/) sin ¢ + (2% - (/)) sin (2w;t — (/))} state is frequency modulated2at;. This will originate spurious

7273 frequency components on each side of the carrier, with an am-
+ ka [COS(/) + cos (2wt — (/))} plitude proportional to the amplitude of the stable limit cycle.
T273 This amplitude grows with the phase-detector curientnd
H(t) = Lw _k tgh [kov(t)]. (18) decreases with the parameler
N N Note that the inclusion of further intermodulation terms in

This is a time-varying (time-dependent) system of the form the phase-detector response would give rise to more complex
dynamics. This is shown in the second type of PD that has been

#(t) = F[z(t), t] (19) considered here: i.e., the JK flip-flop.

3) Dynamic Analysis Versus a Frequency Stépdynamic
whereX is the vector of state variables ahdis the vector of analysis of the synthesizer versus step variations of the division
nonlinear functions. orderN has been carried out. From this analysis, it is possible to

Equation (18) isT-periodic in the variable with 7 = w/w;, obtain the pull-out margin [1]-[7] in terms of the division-order
being half the period of the external forcing. This is due to theep AN. This margin provides the maximum applicable step
model of the PD, which now includes the phase addition ter’AN,,,,,. for reaching phase locking without cycle skipping. The
By averaging (18) in the variableover one periodl, a system maximum valueAN,,., depends on the location of the synthe-
identical to (14) is obtained. Actually, the system (14) agresg&zer operating point in the bifurcation diagram. An example is
with thetime-invariant aveagedsystenassociated to (18) [10] shown in Fig. 6. The phase-locked synthesizer initially operates
since it has been obtained by averaging (18). It can be shoatrthe 2.5-GHz output frequency. In Fig. 6(a), a st = 13 is
[10] that, for small values of the ratiq; /N, the EPs of the av- applied to the frequency divider, making the system evolve to a
eraged system become limit cycles of peribdwith the same new phase-locked solution at the output frequency 2.513 GHz,
stability properties as the EPs of system (14) [10]. In practicejthout cycle skipping. In Fig. 6(b), a bigger division-order step
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Fig. 6. Dynamic analysis versus a division-order sfely for parameter valuesy = 100 A andN = 2500. (a) Time evolution forAN = 13. (b) Time
evolution forAN = 20. Cycle skipping. (c) Orbit in the phase spdee ¢) for AN = 20.

AN = 20 is applied. Cycle skipping is observed. In this casgaink,. Since this step depends on the operating-point position
phase locking is obtained after a very long transient. in the bifurcation diagram, the analysis has been particularized

The solution in Fig. 6(b) has also been represented on tiwetwo initial values of the division order: i.elN = 2100 and
plane(¢, ¢), in Fig. 6(c). Remember that there are two phas& = 2500. As can be seen, the maximum allowed step increases
locked solutions lying on the horizontal axis of this plane: i.ewith the output currenk,.
the stable node-type limit cyclg, (t) and the saddle-type limit
cycleg,(t). Due to the applied division-order steyN, the orbit B. Synthesizer With a Digital PD (JK)
_sgf_fers a dlsplacemer_q_ﬁ¢, .A(/)) from the limit cycle. If the When the output current of the PD is modeled by (13), the
initial displacementA¢ is big enough, the unstable manlfold3 . :

) > S ! ynthesizer equations become

of the saddle solution will initially repel the orbit as the phase

value increases (due to its time dependence). This is observed B ) T di 1 .

in Fig. 6(c). As time evolves, the orbit is then attracted by the o+ Bi+Cv = S PRI

node-type limit cycle (thus, it approaches the horizontal axis) kd

and is repelled again by the saddle-type limit cycle. Note the :i%

phase differencér (horizontal axis) between two consecutive ‘ Aw  ky

minima or two consecutive maxima of the oscillation. This is ¢(t) =5 — ytehlkou(®)] (20)
also the distance between two consecutive node-type solutions

or two consecutive saddle-type solutions. The sign of the right-hand side of the first equation depends

Fig. 7 shows the variation of the maximum division-order stegn both¢(t) andw;t and this dependence is given by (13). The
AN, that can be applied to the synthesizer versus the lospstem (20) can be seen as a time-varying system with a memory
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Fig. 7. Pull-out diagram, in terms of division order St&N,,,.,, for two
different initial values ofN.

introduced by the sequential flip-flop and with an external input
of frequencyw;.

It must be taken into account that, due to the time disconti-
nuity of the PD, its characteristic is highly nonlinear and will
give rise to an infinite number of intermodulation products of
the two input frequencies.

1) Nonlinear Dynamics:In locked conditions, the solutions
of (20) are given by a couple of time-varying solutions with
very small amplitudep,(t), ¢(t). Due to the time varying
character of (20), in steady state, the fundamental frequency o
these solutions is given by the external frequengcyHowever,
for some parameter values, a low-frequency oscillation is
also observed [1]. This oscillation plays a determinant role in
the system dynamics. In [1, Bibliography], its experimental
observation has been related to the phase-margin of the syr-
thesizer-linearized equations. This oscillation cannot generally (®)
be predicted through a linear analysis. In Fig. 8(a), a line&iy. 8. Synthesizer output frequency when using a JK PD. Parameter values
simulation of the synthesizer has been carried out for parafg-= 70 #A N = 2500. (a) Linearized system. Asymptotic evolution to

phase locking. (b) Nonlinear system. Low —frequency modulation of the
eter valuesN = 2500 andkq = 70 pA. No low-frequency phase-locked state.
oscillation is observed. For the same parameter conditions,

the nonlinear analysis provides the solution of Fig. 8(b). Two

frequencies are involved in this solution: the external frequentyPuld not have been possible to obtain this spurious frequency
w; and the low frequency., which is not observed in Fig. 6(a). ifthe phase-detector characteristic (12) had been considered, in-

The oscillation at, in Fig. 8(b) is, in fact, attenuated after?tead of (13). This is an equi.valent situation to the one thained
an extremely long transient, whose duration depends on {dhe case of a frequency mixer when only the phase difference
loop parameters and may be of the order of seconds. As {ﬁém is taken into accou_nt. Under_thls assumption, the synthe-
filter pole approaches the origin, the transient duration tendsge" Phase-locked solutions are given by constant phase values.
infinitum, the oscillation atv, becoming a steady state when The parameter region for which the phase-locked solution
the pole is located exactly at the origin= 0. The value of @x(t) exists is bounded by the curve at which a collision be-
the frequencyy, is also dependent on decreasing as the poletween the two solutiong,,(t) and¢(t) takes place, in an equiv-
approaches the origin. alent phenomenon to the one given by (16). This collision pro-

In practice, for very long transients to the limit cycle.qtthe  Vides the synthesizéwld-inrange (Fig. 9). Thus, phase-locked
low-frequency oscillation, will be experimentally observable, solutionsy,(t) exist on the left-hand side of this border (regions
due to the noise influence. In fact, any arbitrarily small noigelll). The border between regions Ill and INo¢k-in border)
perturbation continuously interrupts the evolution to the weakig given by thesaddle-connectionurve. Rotation solutions are
attracting limit cycle atu;, preventing the system from reachingobserved in regions Il and 1V, in the former region coexisting
this cycle and maintaining it in the long transient state. This wiltith the phase-locked solutions. As will be shown in the fol-
give rise to FM sidebands at, (very close to the carrier) and atlowing section, not all the phase-locked solutions in Fig. 9 will
wji. This will be shown in more detail in Section V. Note that ibe stable.

Nomnalized Output Frequency (KHz)

Time (ms)
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E 02| , \‘.
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has been shown, when the phase-detector model (12) is us g 02|
the phase-locked solutions are given by constant values of t g4l
phase errop = ¢.,. The stability analysis of these solutions is o8
carri_ed out throu_gh Iineariz_ation abapi= {/)or_l- In (_)rder to de- “ Unity Circle
termine the stability evolution versus variations in a paramete 08} \ L
such as the phase-detector output curieptthe synthesizer 4 .= ‘ ,
root locus can be traced. This has been done in Fig. 10(a) for t 0 02 04 06 08 1
. L . Real Part
synthesizer analyzed here. The division order has been fixed w
N = 2100. When increasing the output current fréxpn= 0 1A (b)

toky = 800 pA, the system poles evolve in the sense indicatédy. 10. Stability analysis of the phase-locked solution versus the
by the arrows. Frork — 262 uA, the two poles are complex prase-etecer gat (nereasii i e arow sense), (@) Root fous of e
conjugate. Since the poles are always located on the left-hgaghmetersr, = 18 1004 s !, 7, = 22107 s, 75 = 5.6 107 571,
side of the complex plane, the system is stable forlanyalue. B =1.810°s,C = 2.7 107 §°.
However, in this analysis, it has not been taken into account that
the phase-locked solutions are, in fact, time-varying solutiong.he vectorv(t) is now introduced in the synthesizer equation
b) Limit-cycle stability analysis—Floquet multi-(21) as follows:

pliers: Since the steady state to which the slow transient . .
evolves is a limit cycle at the frequenay, the system, under Xo(t) +1(t) = F(Xo(t) +u(t), t). (22)
small perturbations, can be linearized about this cycle. T
cycle stability can then be determined from Floquet’s theo
[11].

In (19), the nqnllnear sys'Fem of differential equations of the %o(t) +Ti(t) ~ F(io(t), t) + DxF(io(t), t)ﬁ(t). (23)
general synthesizer was written as

e . - o
%pr a small perturbation(t), the following linearization holds
uring at least one periodi:

Thus, the evolution of the perturbation is governed by the linear

x=F(x, 1) (21)  equation

wherex is the state-variable vector containing the phase error a(t) = A(t)u(t) (24)

and its time derivatives. For the third-order synthesizers that are

analyzed here, the dimension of system (21} is= 3. Note with A(t) = DxF(Xo(t), t). Equation (24) represents a linear
that, as observed in (18) and (28)is periodic int, with period system of dimensiom with time-dependent periodic coeffi-
T. The periodic solution at; is denotedk(t) = Xo(t). Forits cients. A matrix’(t) composed of. linearly independent solu-
stability analysis, a small perturbatiaiit) is considered, the tions of (24) can be obtained, such that any solution of (24) can
corresponding perturbed solution beifi@¢) = Xo(t) + W(t). be expressed agt) = W (t)C, with C ann-dimension vector
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32

of constants. Note that the solution of (24) does not have to t
periodic. The matrixl'(t) is not unique. For a particular choice 34|

U(t) = ®(t), fulfilling ¥(0) = I, with I the identity matrix,

it can be demonstrated [11] that every solution of (24) can b 3
expressed as ¥oo|

O
u(t) = 2(t)u(0) (25) B°*°
‘é’_ 27

and fort =T o
5 26|

3
a(T) = &(T)a(0). (26) g 25
241

The matrix®(t) is called themonodromymatrix of the system
(24). Equation (26) shows that the perturbation value after or 23}
perioda(T) is alinear application of its initial valug(0). Being -

{m;}2, the eigenvalues ob(T), if 0 02 04 06 08 1
Time (ms)

|m;| < 1, fori=1,...,n 27 _
Fig. 11. Parameter valuds = 200 A andN = 2800. Unstable solution.

C _ . . Collision with the stable manifold of a chaotic attractor.
then, for any initial valuei(0) of the perturbation, it can be

shown that
fundamentals are involved in the system [12]: i.e., the reference
@D < |0 - (28) frequency, the VCO output frequency, and the low oscillation
frequencyw, mentioned above.
After an infinite number of periods (time tending to infinite), When analyzing a type-l PLL with a frequency modulated
the perturbation value is given big{n'T) = ¢(T)™u(0), n — input, other authors [2], [3] have encountered chaotic solutions
oo. Thus, (27) implies that the perturbatiat) vanishes and due to the formation of transversal homoclinic orbits. This does
the synthesizer steady-state solutit) is stable. The values not seem to be the case here. Actually, the chaotic solutions
{m;}1_, are the so-calleBloquet multiplier§11] associated to in region | (Fig. 9) are observed after the occurrence of a
Xo(t). In general, they are complex values. If any of the multiontransversasaddle connectianin this study, two different
pliers has a module greater that unity, th&it) is unstable.  chaotic attractors have been obtained: i.e., one located below
The former analysis has been applied here to the JK-baskd straight lined, = Nw, and the other above this frequency

synthesizer, fixing the division order tN = 2100 and in- value. Ask, is increased, both attractors increase in size. They
creasingkq, which constitutes the analysis parameter. Thapproach and intermittent transitions are observed between
resulting evolution of the Floquet multipliers is shown irthem. As the gain continues to increase, they become a single
Fig. 10(b). Initially, the three multipliers are inside the unithaotic attractor.
circle, which means stable behavior. For ldw values, the  The chaotic solution to which the system evolves in Fig. 11
three multipliers are real, lying on the real axis. In similais responsible for the observation of unlocked states within the
way to what has already been observed in the root locus, tegnthesizethold-in ranges. Fig. 12 shows the simulated and
of the three multipliers become complex conjugatekasis measured spectrum for the same parameter condifibns
increased. Note that when the complex-conjugate multiplie2$00 andk, = 150 ;.A. Note that, for calculation simplicity, the
are inside the circle, the low-frequency oscillation vanish&smulated spectrum is obtained at the frequency-divider output
after a long transient, as indicated in the previous paragrafistead of the VCO output.
Forks = 80 pA, the pair of complex-conjugate multipliers The frequency peak deviation, due to the chaotic operation,
leave the unity circle, which implies a bifurcation of Hopfand pull-in time (calculated as the rise time to a first zero value
type. When this happens, the phase-locked solutig) is no  of the frequency error) are plotted in Fig. 13 versus the phase-

longer stable. detector output current.
From the Floquet stability analysis, the diagram showing the
global dynamics of the synthesizer on the two-parameter plane IV. PHASE-NOISE ANALYSIS

can now be completed with a bifurcation locus providing the , .
instability border of the phase-locked solutions (Fig. 9). A. Output Spectrum in Phase-Locked Conditions

Fig. 11 shows the time evolution of the synthesizer solution In order to analyze the influence of noise perturbations on
for parameter valueN = 2100 andk, = 100 nA. For these the synthesizer behavior, the loop-element noise contributions
values, the standard stability analysis of Fig. 10(a) had predictesve been included in the analysis. Note that, if the sidebands in-
stable behavior. The Floguet-multiplier analysis has predictbdrent to the synthesizer solution are to be taken into account for
instability. As can be seen, the amplitude of the low-frequentlis analysis, the standard linearization around theEP¢,,,
oscillation increases in time, until the solution collides with this not applicable. In phase-locked conditions, use can be made of
attracting manifold of a chaotic solution. The existence of ththe complex-envelope representation of the VCO output signal,
chaotic solution is probably due to the fact that three differenthich is outlined in the following. This representation is used
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1) Complex-Envelope Representation of the VCO
Output: In phase-locked conditions, the spectrum at the
VCO output can be calculated using a complex-envelope rep-
resentation of the VCO output signal [13]. Note that when the
system is in the locked state, the frequency modulation gives
rise to a narrow spectrum centered around the carridratin
this case, the VCO output signal can be expressed as follows:

Uo(t) = cos[f,(t)]
= cos [Nwit — Ng(t)]
=2(t) cos(Nw;t) + y(t) sin(Nw;t) (29)
with ¢(t) being the phase error andt) = cos[N¢(t)] and

y(t) = sin[Ne(t)].
If the modulation peak is not too big, the signa(s) andy (t)

Fig. 13. Peak frequency deviation and pull-in time versus phase-detectill vary slowly with time. The spectral components af(t)

output current. Discontinuity is due to the chaos onSet= 2100.

for the determination of the synthesizer phase noise at the VCO Fa(w) — iFy(w)

output.

(denoted here dv,,) can then be obtained using the expression
[14]

Fu,(Nw;, +w) = (30)

2
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Solution trajectory in the phase space.

wherew is the small frequency offset from the carriao¢mal- T g
ized frequencyandF . (w), Fy(w) are, respectively, the spectral
components ok(t) andy(t). Note that as the modulation peak i
increases, the spectra oft) andy(t) broaden and the sam- | .
pling interval has to be reduced. When the band is too broad, tt | . | |
method is not applicable. Thus, it cannot be applied to chaot i
solutions. 1
2) Phase-Noise CalculationHere, a nonlinear analysis in L ‘ L ,
the presence of phase-noise fluctuations in the reference osi N L
lator and the VCO has been carried out. The phase-noise con
bution from these two elements has been experimentally ch:  *—
acterized. From the measured phase-noise spectral density =" L B CE ta e
time-domain noise model has been obtained. This is composed
of a white-noise source, plus a filter, with a frequency response ®)
that fits the experimental results [15]. The spectrum has belgg: 16. Stochastic resonance. Parameter valies 2900, ka = 120 pA.

calculated by making use of the periodogram technique [16] .(aatl)tr?ém\;J(I:za(t)egustgﬁitrum at the frequency-divider output. (b) Measured spectrum

When a JK-based PD is used, the locked solution is a stable
limit cyclg at frequencyy;. Accord_m_g to the loop parameters,of dﬁoise bands near to the carrier grows and they approach the
the transient state may also exhibit a small frequency damped .

I -y ...__carrier.
oscillation atw,. However, due to the proximity to the critical
valuee = 0, the damping ratio is very low and the continuous .
perturbation by noise makes observable the characteristicsBofStochastic Resonance
the transient. Thus, the spectrum of the phase-locked state WI|JAS has been shown,

have noise sidebands @f andw,. Itis an example of a NOISY 450 ocked states coexist for some parameter ranges of

precursor [,17]' . . the synthesizer. This region is limited by two bifurcation loci:
Sincew, is very small, the sidebands due to this frequency &f@  the saddle-nodecurve and thesaddle-connectiorurve.

very close to the carrier. They are the so-called *noise ears” [l the neighborhood of theaddle-connectiorcurve (ock-in

The simulated output spectrum is given in Fig. 14(a). The corfggrder), the phase-locked states and rotation-type solutions are

sponding measured spectrum is shown in Fig. 14(b). Note th@kry close. Thus, under the influence of noise perturbations,

in the simulation case, the output power has been normalizggermittent transitions between locked and unlocked states can

Both in simulation and experiment, the sideband power is 10 ¢ observed. This phenomenon, knows@ehastic resonance

below the carrier power. In both cases, the sideband frequeneg], [19], has been experimentally observed in the synthe-

offset is in the order of 100 Hz. The slight discrepancy is dugizer analyzed here. The digital circuitry informing about the

to errors in the filter modeling since the value of the frequengynthesizer state intermittently signalktked and unlocked

w, IS strongly dependent on the filter pole distance to the orighehavior. This corresponds to transitions between a rotation

€. When the filter pole approximates the origin, the amplitudend a phase-locked limit cycle. The time-domain trajectory

N

s o

SPAN 108

stable rotation solutions and
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under noise perturbations for parameter valNes: 2900 and  [11] G. loos and D. D. JosepBlementary Stability and Bifurcation Theory
kq = 150 pA (very close to a saddle connection) is shown in 2 inf:wed-T ?ﬁrlm, Germandy:ﬁp%ngg;-Verlr%g, }_990. 5 ' .
. . . . . . ompson an . . ewaryonlinear Dynamics an
Fig. 15. The short-duration phase locking takes place in th& Chaos New York: Wiley, 1986.
dense intervals located abapit= 0. The system then moves [13] L. R. Rabiner and B. GoldTheory and Application of Digital Signal
to the rotation solution, returning after a short time interval to ~ Processing Englewood Cliffs, NJ: Prentice-Hall, 1975.
the phase-locked state. This gives rise to a great increase ! Z\S%O%fgg%t' M“gff'lg‘é%“ solving noise problemByoc. IRE vol. 44,
the noise-power spectral den?'Wa as shown in the S|m_u!ateﬁ5] A. B. Carlson,Communication SystemsNew York: McGraw-Hill,
spectrum of Fig. 16(a), obtained at the frequency divider —1986. _ ‘
output. Fig. 16(b) shows the measured spectrum at the VC®S E. O. Brigham, The Fast Fourier Transform and lts Applica-
- L. tions Englewood Cliffs, NJ: Prentice-Hall, 1988.
output for the same Op?rat'on condltlons'. L [17] C. Jeffries and K. Wiesenfeld, “Observation of noisy precursors of dy-
Note that the analysis of the stochastic resonance is impos- = namical instabilities, Phys. Rev. A, Gen. Physol. 31, pp. 1077-1084,
sible under system-linearization conditions. The linearization ! |1:9:\3/|2- o i 4D.0G "Stochasti Tutorial
L . . Moss, D. Plerson, an . orman, ochastic resonance: lutorial
assumes a small vf':matlon of the sy;tem §tate v_anablgs_und%? and update,Int. J. Bifurcations Chaasvol. 4, no. 6, pp. 1383-1397,
the noise perturbation. Close to a bifurcation point, this is no  June 1994.
longer true, as in the example of Fig. 15. [19] V. S. Anishchenko, M. A. Safonova, and L. O. Chua, “Stochastic reso-
nance in the non autonomous Chua’s circultCircuits, Syst., Comput.
vol. 3, no. 2, pp. 553-578, Feb. 1993.
V. CONCLUSIONS

A global analysis of the nonlinear dynamics of microwave
frequency synthesizers based on type-ll PLLs has been pre-

sented. The analysis is based on a realistic description of
synthesizer elements, which has enabled the accurate dete
nation of its operating borders and, thus, the prediction of hy -
teresis phenomena. Two different kinds of PD have been cc
sidered: i.e., a digital PD, based on a JK flip-flop, and a tyj
ical analog mixer. The performances of both are compared

terms of stability and spurious components in the output spe
trum. Prediction of incidental FM noise is also carried out. Its
influence on the VCO output spectrum is quantified by means of
a nonlinear analysis of the synthesizer, in the presence of noise
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