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Nonlinear Dynamics of Microwave
Synthesizers—Stability and Noise
Sergio Sancho, Almudena Suárez, Member, IEEE, and Tomás Fernández

Abstract—The nonlinear dynamics of microwave synthesizers
based on type-II third-order loops is analyzed in this paper. Instead
of using standard simplified models, realistic models are consid-
ered for the loop filter, phase detector (PD), and voltage-controlled
oscillator based on experimental characterization. The new models
enable the simulation of incidental frequency modulation and the
accurate prediction of the synthesizer operation ranges, including
possible hysteresis phenomena. The stability of phase-locked solu-
tions is analyzed, enabling the prediction of possible chaotic be-
havior. For an accurate determination of the output spectrum, a
phase-noise simulation is also carried out, considering the noise
contributions from the loop elements. The sidebands inherent to
the synthesizer solution are taken into account for this analysis. All
the above analysis strategy has been applied to a microwave synthe-
sizer, operating in the 2–3-GHz band, with very good results. Two
types of PDs are considered: the JK flip-flop PD and frequency
mixer, comparing the resulting loop performance in terms of sta-
bility and phase noise.

Index Terms—Chaos, hysteresis, incidental FM, microwave syn-
thesizers, phase noise, stochastic resonance.

I. INTRODUCTION

T HE strict phase-noise specifications of current commu-
nication systems usually make necessary the synthesis of

microwave oscillators before their integration in a particular
system. This frequency synthesis is carried out through a
phase-locked loop (PLL). The main elements of this loop, aside
from the voltage-controlled oscillator (VCO), are the phase
detector (PD) (which may be analog or digital), loop filter,
and frequency divider (Fig. 1). For phase-noise reduction, the
convenience of using a type-II (or higher) PLL has been shown
[1]. Actually, the type-II third-order PLL, with an integrator
in the filter loop (the other is provided by the VCO transfer
function) is the most common type of synthesizer at microwave
frequencies. Although more poles may be added to the loop
filter for reference suppression, the type-II third-order PLL
provides a good insight into the system nonlinear dynamics [1].

In the linear analysis of the synthesizer, the PD is modeled
with a linear function. However, this simplification is only valid
for small phase error between the two input signals. The ac-
tual nonlinear nature of this and other elements, together with
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Fig. 1. Schematic of the frequency synthesizer.

the system feedback, often give rise to very complex nonlinear
behavior. Actually, some works [2], [3] relate the type-I PLL
equations to those describing the Josephson-junction supercon-
ductor [4], for which the existence of chaotic attractors has been
analytically demonstrated.

Most of the studies on PLL nonlinear dynamics are devoted
to type-I PLLs [2], [3]. In the case of type-II PLLs, infinitum
hold-in ranges are theoretically obtained [1], [5], [6] due to the
presence of a second integrator in the loop. The fact that the syn-
thesizer is always in locked condition should also prevent any
hysteresis or instability phenomenon. However, this contradicts
the everyday observations of microwave-oscillator designers.

The nonlinear analysis is the first step for a realistic predic-
tion of the behavior of the microwave synthesizer. This non-
linear analysis, introduced, among others, by Viterbi [7] and
Sannemanet al. [8] provided invaluable information about the
basic operation of second- and third-order loops. However, even
in a nonlinear analysis, the results may qualitatively differ from
the experimental ones if oversimplified descriptions are taken
for the loop elements. Actually, when using simplified models
for the response of the PD (as a function of the phase differ-
ence between its two input signals), the prediction, for instance,
of the incidental frequency modulation (FM) [1] is impossible.
In locked condition, these models provide a constant frequency
and a constant phase shift in the VCO output when experimental
observations show a frequency modulation of this signal. In the
spectrum, this gives rise to sidebands, which are inherent to the
synthesizer solution. The variation in the actual nature of the
steady-state solution may invalidate the stability predictions of
the standard linearization around a constant-phase solution. In
fact, instabilities of the frequency-modulated solution may lead
to chaotic behavior [9]. On the other hand, the FM sidebands
influence the overall phase-noise behavior of the synthesizer
and should be taken into account when designing under strict
phase-noise specifications.

The aim of the analysis presented in this paper has been to
gain some insight into the nonlinear dynamics of microwave
synthesizers based on type-II loops. The analysis is based on re-
alistic descriptions of the synthesizer elements. The capability
to determine and detect the instability phenomena that lead the
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system out of lock should enable an accurate prediction of its
operation ranges. In order to evaluate the influence of noise per-
turbations on the actual system solution, the phase-noise contri-
butions of the loop elements, obtained from experimental char-
acterization, have also been considered. The synthesizer phase-
noise analysis is carried out taking into account the actual os-
cillating nature of the solution. This accurate prediction of the
phase-noise spectrum should also avoid the usual laboratory
trial-and-error work before obtaining satisfactory result. For the
sake of generality, two different types of PD have been consid-
ered: an analog mixer and a JK flip-flop PD.

The paper is organized as follows. Section II presents the
synthesizer equations and the element models that have been
used here, comparing the simulation results with those obtained
through traditional modeling. Section III shows a parametric
analysis of the synthesizer, with emphasis on the determination
of its operating limits. Section IV analyzes the synthesizer sta-
bility and the presence of chaotic solutions. Section V is devoted
to the analysis of the synthesizer phase-noise. The analysis is
particularized to a 2–3-GHz microwave synthesizer and, in each
section, simulation results are compared with measurements.

II. NONLINEAR MODELING OF THEMICROWAVE SYNTHESIZER

A. Synthesizer General Equations

As shown in Fig. 1, the synthesizer is made up of a nonlinear
PD, a loop filter, a VCO, and a frequency divider. The input-
signal is considered to be a sinusoidal waveform, given by

with and (1)

while the VCO output has the form

(2)

The output current of the PD is a nonlinear function of both the
input phase and the output phase (divided by )

(3)

In the particular case of a type-II third-order loop, the filter
transfer function is given by

(4)

The pole ideally located at the origin provides high dc gain and
improves the phase-noise characteristic. The VCO oscillates at
a frequency depending on the control voltage

(5)

The phase-detector output current and the control voltage
are related by the filter transfer function

(6)

The combination of equations from (3)–(6) provides the
Laplace form of the general equation governing the synthesizer
dynamics

(7)

Since only depends on time, the synthesizer can be
modeled as a time varying (time dependent) third-order system
whose state variables are the VCO output phase and its first-
and second-order time derivatives . This is the
most general description of the synthesizer. Now the general
functions from (3)–(5) are going to be replaced with realistic
models.

B. Description of the Filter

In (4), the filter response is modeled with an ideal transfer
function, having a pole located exactly at the origin. However,
this location is not possible in practice, due to dc gain finiteness
and parasitics in the active filter. Actually, for this situation, the
system becomes a stabilitycenterfor the unlocked rotation so-
lutions, as in a linear oscillator. In a more realistic description
of the filter, the pole will be slightly displaced from the origin,
according to the actual element values. The ratio between the
two pole displacements remains, however, very small. The new
transfer function is given by

(8)

where and are constant coefficients, calculated so that the
zero (at ) and pole (at ) remain at the same positions of
(4). The second pole (very close to the origin) is estimated from
the actual filter response. This pole is located at . As
will be shown, the value has a great influence on the system
dynamics.

C. Description of the VCO Response

For an accurate simulation of the synthesizer behavior, a re-
alistic model of the VCO response versus the control voltage
must be considered. This model must include all the saturation
and nonlinear effects observed in this circuit. The linear approx-
imation often considered in PLL analysis is valid for small vari-
ations of the control voltage , but in the general case, is in-
accurate. As an example, the VCO employed here has been ex-
perimentally characterized, obtaining the frequency response of
Fig. 2. A curve of this type can be modeled with the following
equation:

(9)

where and are fitting parameters and is the free-running
angular frequency of the VCO. The modeled characteristic has
been superimposed over the experimental one (see Fig. 2).

D. Description of the PD

Two different kinds of PD (i.e., analog and digital, respec-
tively) have been considered here: a frequency mixer and a JK
flip-flop, as an example of digital PD. The objective has been the
analysis and comparison of the overall system dynamics, when
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Fig. 2. Frequency response of the VCO versus the control voltage. The
parameters of (9) arek = 5:7 10 rad/s,k = 0:15 v , ! = 2:1 � 2�

10 rad/s.

using two different types of PDs, and the JK has been chosen
for modeling simplicity. The tristate comparator is also widely
used and will be the object of a future work.

1) Frequency Mixer:The frequency mixer is a nonlinear
element, giving rise to intermodulation products of the two
input frequencies. The products with highest amplitude cor-
respond to the lowest intermodulation orders. For the sake of
simplicity, in classic PLL analysis (even in nonlinear analysis),
the response of the frequency mixer is generally limited to the
phase-difference term. In this approximation, it is assumed that
the phase-sum term is completely attenuated by the low-pass
filter. Under this assumption, the equation for the PD output
current (3) is reduced to

(10)

where is the phase-detector output current and is the
so-calledphase error.

In order to get some insight into the influence of the inter-
modulation products, the term corresponding to phase addition
has been included in the PD model

(11)

2) JK-Based PD:A JK flip-flop has been chosen as an
example of digital PD, due to its accurate detection of both
phase and frequency variations [1]. In this kind of detector,
there are two output levels. The output current is positive in
two cases: when the reference frequency is bigger than the
output frequency divided by and, if the two frequencies
have the same value, when the reference signal leads the
frequency-divided output signal in phase. In the opposite cases,
the output current is negative. The filter capacitor is charged for
the positive level and discharged for the negative one. The filter

integrator averages the PD output pulses. Taking into account
this averaging of the current pulses, the JK PD has usually been
modeled with thesawtoothequation

with (12)

In this study, the sequential character of the output current has
been taken into account to enable a more accurate modeling.
The table of truthof the JK flip-flop provides the following
piecewise-linear function:

for and

for and

for any other case. (13)

It is a discontinuous function with a memory. Note that the
output current depends on both the divider output phase
and the reference phase. Its highly nonlinear dynamics gives
rise to many spurious terms, resulting from intermodulation.
These spurious terms have a crucial influence on the synthesizer
dynamics, as will be shown.

III. GLOBAL ANALYSIS OF THE SYNTHESIZER NONLINEAR

DYNAMICS

In this section, the general equation (7) governing the synthe-
sizer dynamics is particularized to the case of using a frequency
mixer or a JK PD.

A. Synthesizer With an Analog PD—Frequency Mixer

In order to show the relevance of the phase-detector model
in the system dynamics, both the simplified description of the
frequency mixer given by (10) and the more accurate one given
by (11) will be considered.

1) Time-Invariant Case:When using the simplified descrip-
tion (10), the synthesizer equations can be globally expressed in
terms of the phase error

(14)

where . The cases and
are symmetric, thus, only values making will be
considered.

The system (14) is time invariant since its equations do not
depend explicitly on time. The state variables are given by

. Since the system is periodic in, every system state
is an element of .

When solving (14), the main interest is in finding the phase-
locked solutions and the parameter ranges for which these so-
lutions exist. When writing the synthesizer equation in terms of
the phase error [as has been done in (14)], these phase-locked
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Fig. 3. Bifurcation diagram of the synthesizer when a frequency mixer is used
as a PD.

solutions are given by a constant phase-error value .
Thus, they correspond to the equilibrium points (EPs) of the
time-invariant system (14), which are calculated by equating

. This provides

(15)

The existence of EPs is determined by the condition .
Thus, the EPs or the phase-locked solutions do not exist for
all the parameter values. The parameters that will be consid-
ered here are the PD current and the division order , both
included in (15). When the condition is fulfilled,
two different solutions are obtained, i.e., . These so-
lutions correspond to locked states of the system since the fre-
quency error is zero. The relation between both solutions is

. It can be shown that one of the solutions, i.e.,
, is a stable focus of node type and is an unstable so-

lution of saddle type. Since one of the filter poles is very close
to the origin, will have a value close to zero for most of the
parameter-variation range. Its value will vary fast for parameter
values near the limit condition .

In the plane defined by and , the curve delimiting the ex-
istence of phase-locked solutions is obtained from the condition

(16)

Note that since [due to (9)], the quantity inside the
logarithm is always positive. The curve given by (16) has been
represented in Fig. 3 [curve (a)]. Phase-locked solutions only
exist on the left-hand side of curve (a), this curve providing
the synthesizerhold-in range. Along curve (a), a collision be-
tween the stable and unstable EPs takes place. This
collision gives rise to the extinction or creation (according to
the sense of variation of the parameter) of the two EPs in a
saddle-nodebifurcation [10]. Note that for , the cur-
rent tends to infinitum, which means that beyond this limit,
locking is not possible. This is due to the VCO saturation. The
parameter can never increase beyond a maximum value

Fig. 4. Synthesizer based on a frequency mixer. Autonomous system.
Coexistence, for the same parameter values, of a stable phase-locked solution
(EP) and a stable rotation solution.

corresponding to the maximum frequency at which the VCO
can oscillate before saturation. Here, the maximum VCO output
frequency is [from (9)], thus, the maximum integer
product of the input frequency that can be followed by the VCO
is . Therefore, limits the bifurcation
diagram.

Up to now, (14) has only been solved for its EPs. However,
for some parameter ranges, a time periodic solution may also
be found. This is a stable periodic orbit of rotation type
[2]–[4] that has the property

(17)

This solution has been represented in Fig. 4 for parameter values
for which it coexists with the EP. Note that great time

variations of the frequency error are obtained for this solution.
Since the frequency error is always positive, the VCO output
frequency never locks to . Thus, the rotation solution will
correspond to an unlocked state of the system. The rotation so-
lution typically originates at the saddle EP, through the non-
transversal intersection of its stable and unstable manifolds [10].
This phenomenon occurs for values, forming a curve in
the parameter plane that cannot be analytically obtained for the
complex system (14). Along this curve (curve (b) of Fig. 3), the
periodic solution collides with the unstable EP. The phe-
nomenon is calledsaddle connection[2]–[4]. This provides the
lock-in border in the synthesizer operation. The two curves re-
spectively given by thesaddle-nodebifurcation [curve (a)] and
thesaddle connection[curve (b)] define three different regions
in the parameter plane. In region I, there are two EPs. In re-
gion II, EPs and rotation solutions coexist and, according to the
system initial values, convergence to an EP or a rotation solu-
tion may be obtained, as shown in Fig. 4. In region III, there are
rotation solutions.

As has been pointed out, the distance to the origin of the
second filter pole is a very sensitive parameter in the system
dynamics. Actually, the position of the stability borders greatly
depends on this parameter. For , thesaddle-node-bifur-
cation curve lies on the horizontal axis and thehold-in range
becomes infinite, in agreement with analytical predictions from



1796 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 10, OCTOBER 2001

simplified models [5], [6]. Thesaddle-connectionborder also
approaches the horizontal axis when the distance is de-
creased.

The sequence of bifurcations obtained when increasingfor
constant (following the horizontal line (A) of the bifurca-
tion diagram of Fig. 3) is described below. Initially, the system
operates in region I and the solution trajectory evolves to the
stable node. At this point, the PLL is locked. If is now in-
creased, the system enters region II and the rotation solution
appears and coexists with the EPs. However, since the system is
moving from region I, its initial conditions are close to the stable
EP and the system remains locked. Continuing to increase, as
curve (a) is approached, the stable and unstable EPs approach
each other fast and eventually collide. In region III, the EPs have
disappeared and the system trajectory is attracted by the stable
rotation solution, the synthesizer becoming unlocked. Now, if
line A is followed in the inverse sense (from region III to re-
gion I), a hysteresis phenomenon is observed. Actually, when
reducing the value, curve (a) is traversed, the two EPs reap-
pear, but the initial conditions, very close to the rotation solu-
tion, make the system trajectory converge to solutions of rota-
tion type. Thus, the system remains unlocked in a parameter re-
gion for which locked solutions had previously been obtained.
However, as continues to be reduced, the amplitude of the ro-
tation increases and a collision with the unstable EP takes place
at thesaddle-connectioncurve [curve (b)]. After this collision,
the rotation is destroyed. The system enters region I and the so-
lution trajectory is attracted by the stable node (the only stable
solution). When this happens, the system gets locked.

2) Time Varying Case:When the phase sum term, neglected
in (10), is taken into account for the synthesizer analysis, impor-
tant qualitative variations are obtained in its dynamics. When
considering this term, the synthesizer equation becomes

(18)

This is a time-varying (time-dependent) system of the form

(19)

where is the vector of state variables andis the vector of
nonlinear functions.

Equation (18) is -periodic in the variable with ,
being half the period of the external forcing. This is due to the
model of the PD, which now includes the phase addition term.
By averaging (18) in the variableover one period , a system
identical to (14) is obtained. Actually, the system (14) agrees
with thetime-invariant averagedsystemassociated to (18) [10]
since it has been obtained by averaging (18). It can be shown
[10] that, for small values of the ratio , the EPs of the av-
eraged system become limit cycles of period, with the same
stability properties as the EPs of system (14) [10]. In practice,

Fig. 5. Synthesizer based on a frequency mixer. Time-varying system.
Coexistence, for the same parameter values, of a stable phase-locked solution
(limit cycle) and a stable rotation solution (quasi-periodic). Inset: expanded
view of the limit cycle.

this assumption is valid for the whole range of values
that are usually covered in the performance of the synthesizer
based on the frequency mixer. Thus, the bifurcation diagram
for the system (18) has the same regions as the one shown be-
fore (Fig. 3). It must also be noted that the rotation-type peri-
odic solutions of the averaged system (14) become quasi-peri-
odic solutions of (18), with fundamental frequencies given by
the self-oscillation frequency [observed in the rotations of the
system (14)] and the frequency . The two types of more
realistic solutions (limit cycle and quasi-periodic rotation) are
shown in Fig. 5. Note that now the locked states are not EPs
in the space , but limit cycles surrounding the
EPs of (14). Thus, the output of the VCO in the locked
state is frequency modulated at . This will originate spurious
frequency components on each side of the carrier, with an am-
plitude proportional to the amplitude of the stable limit cycle.
This amplitude grows with the phase-detector currentand
decreases with the parameter.

Note that the inclusion of further intermodulation terms in
the phase-detector response would give rise to more complex
dynamics. This is shown in the second type of PD that has been
considered here: i.e., the JK flip-flop.

3) Dynamic Analysis Versus a Frequency Step:A dynamic
analysis of the synthesizer versus step variations of the division
order has been carried out. From this analysis, it is possible to
obtain the pull-out margin [1]–[7] in terms of the division-order
step . This margin provides the maximum applicable step

for reaching phase locking without cycle skipping. The
maximum value depends on the location of the synthe-
sizer operating point in the bifurcation diagram. An example is
shown in Fig. 6. The phase-locked synthesizer initially operates
at the 2.5-GHz output frequency. In Fig. 6(a), a step is
applied to the frequency divider, making the system evolve to a
new phase-locked solution at the output frequency 2.513 GHz,
without cycle skipping. In Fig. 6(b), a bigger division-order step
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(a) (b)

(c)

Fig. 6. Dynamic analysis versus a division-order step�N for parameter valuesk = 100 �A andN = 2500. (a) Time evolution for�N = 13. (b) Time
evolution for�N = 20. Cycle skipping. (c) Orbit in the phase space(�; _�) for �N = 20.

is applied. Cycle skipping is observed. In this case,
phase locking is obtained after a very long transient.

The solution in Fig. 6(b) has also been represented on the
plane , in Fig. 6(c). Remember that there are two phase-
locked solutions lying on the horizontal axis of this plane: i.e.,
the stable node-type limit cycle and the saddle-type limit
cycle . Due to the applied division-order step , the orbit
suffers a displacement from the limit cycle. If the
initial displacement is big enough, the unstable manifold
of the saddle solution will initially repel the orbit as the phase
value increases (due to its time dependence). This is observed
in Fig. 6(c). As time evolves, the orbit is then attracted by the
node-type limit cycle (thus, it approaches the horizontal axis)
and is repelled again by the saddle-type limit cycle. Note the
phase difference (horizontal axis) between two consecutive
minima or two consecutive maxima of the oscillation. This is
also the distance between two consecutive node-type solutions
or two consecutive saddle-type solutions.

Fig. 7 shows the variation of the maximum division-order step
that can be applied to the synthesizer versus the loop

gain . Since this step depends on the operating-point position
in the bifurcation diagram, the analysis has been particularized
to two initial values of the division order: i.e., and

. As can be seen, the maximum allowed step increases
with the output current .

B. Synthesizer With a Digital PD (JK)

When the output current of the PD is modeled by (13), the
synthesizer equations become

(20)

The sign of the right-hand side of the first equation depends
on both and and this dependence is given by (13). The
system (20) can be seen as a time-varying system with a memory
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Fig. 7. Pull-out diagram, in terms of division order step�N , for two
different initial values ofN.

introduced by the sequential flip-flop and with an external input
of frequency .

It must be taken into account that, due to the time disconti-
nuity of the PD, its characteristic is highly nonlinear and will
give rise to an infinite number of intermodulation products of
the two input frequencies.

1) Nonlinear Dynamics:In locked conditions, the solutions
of (20) are given by a couple of time-varying solutions with
very small amplitude , . Due to the time varying
character of (20), in steady state, the fundamental frequency of
these solutions is given by the external frequency. However,
for some parameter values, a low-frequency oscillation is
also observed [1]. This oscillation plays a determinant role in
the system dynamics. In [1, Bibliography], its experimental
observation has been related to the phase-margin of the syn-
thesizer-linearized equations. This oscillation cannot generally
be predicted through a linear analysis. In Fig. 8(a), a linear
simulation of the synthesizer has been carried out for param-
eter values and A. No low-frequency
oscillation is observed. For the same parameter conditions,
the nonlinear analysis provides the solution of Fig. 8(b). Two
frequencies are involved in this solution: the external frequency

and the low frequency , which is not observed in Fig. 6(a).
The oscillation at in Fig. 8(b) is, in fact, attenuated after
an extremely long transient, whose duration depends on the
loop parameters and may be of the order of seconds. As the
filter pole approaches the origin, the transient duration tends to
infinitum, the oscillation at becoming a steady state when
the pole is located exactly at the origin . The value of
the frequency is also dependent on, decreasing as the pole
approaches the origin.

In practice, for very long transients to the limit cycle at, the
low-frequency oscillation will be experimentally observable,
due to the noise influence. In fact, any arbitrarily small noise
perturbation continuously interrupts the evolution to the weakly
attracting limit cycle at , preventing the system from reaching
this cycle and maintaining it in the long transient state. This will
give rise to FM sidebands at (very close to the carrier) and at

. This will be shown in more detail in Section V. Note that it

(a)

(b)

Fig. 8. Synthesizer output frequency when using a JK PD. Parameter values
k = 70 �A, N = 2500. (a) Linearized system. Asymptotic evolution to
phase locking. (b) Nonlinear system. Low —frequency modulation of the
phase-locked state.

would not have been possible to obtain this spurious frequency
if the phase-detector characteristic (12) had been considered, in-
stead of (13). This is an equivalent situation to the one obtained
in the case of a frequency mixer when only the phase difference
term is taken into account. Under this assumption, the synthe-
sizer phase-locked solutions are given by constant phase values.

The parameter region for which the phase-locked solution
exists is bounded by the curve at which a collision be-

tween the two solutions and takes place, in an equiv-
alent phenomenon to the one given by (16). This collision pro-
vides the synthesizerhold-in range (Fig. 9). Thus, phase-locked
solutions exist on the left-hand side of this border (regions
I–III). The border between regions III and IV (lock-in border)
is given by thesaddle-connectioncurve. Rotation solutions are
observed in regions III and IV, in the former region coexisting
with the phase-locked solutions. As will be shown in the fol-
lowing section, not all the phase-locked solutions in Fig. 9 will
be stable.
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Fig. 9. Bifurcation diagram of the synthesizer when the JK phase detector is
used. Region I, unstable phase-locked solutions. Chaos is observed. Region II,
stable phase-locked solutions. Region III, coexistence of stable phase-locked
solutions and rotations. Region IV, rotations. Measurements have been
superimposed for the available current values of the phase-detector.

2) Stability Analysis—Chaotic Responses:
a) Equilibrium-point stability analysis—Root locus:As

has been shown, when the phase-detector model (12) is used,
the phase-locked solutions are given by constant values of the
phase error . The stability analysis of these solutions is
carried out through linearization about . In order to de-
termine the stability evolution versus variations in a parameter,
such as the phase-detector output current, the synthesizer
root locus can be traced. This has been done in Fig. 10(a) for the
synthesizer analyzed here. The division order has been fixed to

. When increasing the output current from A
to A, the system poles evolve in the sense indicated
by the arrows. From A, the two poles are complex
conjugate. Since the poles are always located on the left-hand
side of the complex plane, the system is stable for anyvalue.
However, in this analysis, it has not been taken into account that
the phase-locked solutions are, in fact, time-varying solutions.

b) Limit-cycle stability analysis—Floquet multi-
pliers: Since the steady state to which the slow transient
evolves is a limit cycle at the frequency, the system, under
small perturbations, can be linearized about this cycle. The
cycle stability can then be determined from Floquet’s theory
[11].

In (19), the nonlinear system of differential equations of the
general synthesizer was written as

(21)

where is the state-variable vector containing the phase error
and its time derivatives. For the third-order synthesizers that are
analyzed here, the dimension of system (21) is . Note
that, as observed in (18) and (20),is periodic in , with period

. The periodic solution at is denoted . For its
stability analysis, a small perturbation is considered, the
corresponding perturbed solution being .

(a)

(b)

Fig. 10. Stability analysis of the phase-locked solution versus the
phase-detector gaink (increasing in the arrow sense). (a) Root locus of the
linearized system around the EP. (b) Evolution of the Floquet multipliers. Filter
parameters:� = 18 10 s , � = 2:2 10 s , � = 5:6 10 s ,
B = 1:8 10 s,C = 2:7 10 s .

The vector is now introduced in the synthesizer equation
(21) as follows:

(22)

For a small perturbation , the following linearization holds
during at least one period:

(23)

Thus, the evolution of the perturbation is governed by the linear
equation

(24)

with . Equation (24) represents a linear
system of dimension with time-dependent periodic coeffi-
cients. A matrix composed of linearly independent solu-
tions of (24) can be obtained, such that any solution of (24) can
be expressed as , with an -dimension vector
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of constants. Note that the solution of (24) does not have to be
periodic. The matrix is not unique. For a particular choice

, fulfilling , with the identity matrix,
it can be demonstrated [11] that every solution of (24) can be
expressed as

(25)

and for

(26)

The matrix is called themonodromymatrix of the system
(24). Equation (26) shows that the perturbation value after one
period is a linear application of its initial value . Being

the eigenvalues of , if

for (27)

then, for any initial value of the perturbation, it can be
shown that

(28)

After an infinite number of periods (time tending to infinite),
the perturbation value is given by ,

. Thus, (27) implies that the perturbation vanishes and
the synthesizer steady-state solution is stable. The values

are the so-calledFloquet multipliers[11] associated to
. In general, they are complex values. If any of the multi-

pliers has a module greater that unity, then is unstable.
The former analysis has been applied here to the JK-based

synthesizer, fixing the division order to and in-
creasing , which constitutes the analysis parameter. The
resulting evolution of the Floquet multipliers is shown in
Fig. 10(b). Initially, the three multipliers are inside the unit
circle, which means stable behavior. For low values, the
three multipliers are real, lying on the real axis. In similar
way to what has already been observed in the root locus, two
of the three multipliers become complex conjugate asis
increased. Note that when the complex-conjugate multipliers
are inside the circle, the low-frequency oscillation vanishes
after a long transient, as indicated in the previous paragraph.
For A, the pair of complex-conjugate multipliers
leave the unity circle, which implies a bifurcation of Hopf
type. When this happens, the phase-locked solution is no
longer stable.

From the Floquet stability analysis, the diagram showing the
global dynamics of the synthesizer on the two-parameter plane
can now be completed with a bifurcation locus providing the
instability border of the phase-locked solutions (Fig. 9).

Fig. 11 shows the time evolution of the synthesizer solution
for parameter values and A. For these
values, the standard stability analysis of Fig. 10(a) had predicted
stable behavior. The Floquet-multiplier analysis has predicted
instability. As can be seen, the amplitude of the low-frequency
oscillation increases in time, until the solution collides with the
attracting manifold of a chaotic solution. The existence of this
chaotic solution is probably due to the fact that three different

Fig. 11. Parameter valuesk = 200 �A andN = 2800. Unstable solution.
Collision with the stable manifold of a chaotic attractor.

fundamentals are involved in the system [12]: i.e., the reference
frequency, the VCO output frequency, and the low oscillation
frequency mentioned above.

When analyzing a type-I PLL with a frequency modulated
input, other authors [2], [3] have encountered chaotic solutions
due to the formation of transversal homoclinic orbits. This does
not seem to be the case here. Actually, the chaotic solutions
in region I (Fig. 9) are observed after the occurrence of a
nontransversalsaddle connection. In this study, two different
chaotic attractors have been obtained: i.e., one located below
the straight line and the other above this frequency
value. As is increased, both attractors increase in size. They
approach and intermittent transitions are observed between
them. As the gain continues to increase, they become a single
chaotic attractor.

The chaotic solution to which the system evolves in Fig. 11
is responsible for the observation of unlocked states within the
synthesizerhold-in ranges. Fig. 12 shows the simulated and
measured spectrum for the same parameter conditions

and A. Note that, for calculation simplicity, the
simulated spectrum is obtained at the frequency-divider output
instead of the VCO output.

The frequency peak deviation, due to the chaotic operation,
and pull-in time (calculated as the rise time to a first zero value
of the frequency error) are plotted in Fig. 13 versus the phase-
detector output current.

IV. PHASE-NOISE ANALYSIS

A. Output Spectrum in Phase-Locked Conditions

In order to analyze the influence of noise perturbations on
the synthesizer behavior, the loop-element noise contributions
have been included in the analysis. Note that, if the sidebands in-
herent to the synthesizer solution are to be taken into account for
this analysis, the standard linearization around the EP
is not applicable. In phase-locked conditions, use can be made of
the complex-envelope representation of the VCO output signal,
which is outlined in the following. This representation is used
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(a)

(b)

Fig. 12. Chaotic spectrum forN = 2100. (a) Simulated at the
frequency-divider output. (b) Measured at the VCO output.

Fig. 13. Peak frequency deviation and pull-in time versus phase-detector
output current. Discontinuity is due to the chaos onset.N = 2100.

for the determination of the synthesizer phase noise at the VCO
output.

(a)

(b)

Fig. 14. Synthesizer output spectrum when noise perturbations are considered.
Parameter valuesk = 70 �A andN = 2400. (a) Simulated. (b) Experimental.

1) Complex-Envelope Representation of the VCO
Output: In phase-locked conditions, the spectrum at the
VCO output can be calculated using a complex-envelope rep-
resentation of the VCO output signal [13]. Note that when the
system is in the locked state, the frequency modulation gives
rise to a narrow spectrum centered around the carrier at. In
this case, the VCO output signal can be expressed as follows:

(29)

with being the phase error and and
.

If the modulation peak is not too big, the signals and
will vary slowly with time. The spectral components of
(denoted here as can then be obtained using the expression
[14]

(30)
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Fig. 15. Stochastic resonance. Parameter valuesN = 2900, k = 120 �A.
Solution trajectory in the phase space.

where is the small frequency offset from the carrier (normal-
ized frequency) and , are, respectively, the spectral
components of and . Note that as the modulation peak
increases, the spectra of and broaden and the sam-
pling interval has to be reduced. When the band is too broad, this
method is not applicable. Thus, it cannot be applied to chaotic
solutions.

2) Phase-Noise Calculation:Here, a nonlinear analysis in
the presence of phase-noise fluctuations in the reference oscil-
lator and the VCO has been carried out. The phase-noise contri-
bution from these two elements has been experimentally char-
acterized. From the measured phase-noise spectral density, a
time-domain noise model has been obtained. This is composed
of a white-noise source, plus a filter, with a frequency response
that fits the experimental results [15]. The spectrum has been
calculated by making use of the periodogram technique [16].

When a JK-based PD is used, the locked solution is a stable
limit cycle at frequency . According to the loop parameters,
the transient state may also exhibit a small frequency damped
oscillation at . However, due to the proximity to the critical
value , the damping ratio is very low and the continuous
perturbation by noise makes observable the characteristics of
the transient. Thus, the spectrum of the phase-locked state will
have noise sidebands at and . It is an example of a noisy
precursor [17].

Since is very small, the sidebands due to this frequency are
very close to the carrier. They are the so-called “noise ears” [1].
The simulated output spectrum is given in Fig. 14(a). The corre-
sponding measured spectrum is shown in Fig. 14(b). Note that,
in the simulation case, the output power has been normalized.
Both in simulation and experiment, the sideband power is 10 dB
below the carrier power. In both cases, the sideband frequency
offset is in the order of 100 Hz. The slight discrepancy is due
to errors in the filter modeling since the value of the frequency

is strongly dependent on the filter pole distance to the origin
. When the filter pole approximates the origin, the amplitude

(a)

(b)

Fig. 16. Stochastic resonance. Parameter valuesN = 2900, k = 120 �A.
(a) Simulated spectrum at the frequency-divider output. (b) Measured spectrum
at the VCO output.

of noise bands near to the carrier grows and they approach the
carrier.

B. Stochastic Resonance

As has been shown, stable rotation solutions and
phase-locked states coexist for some parameter ranges of
the synthesizer. This region is limited by two bifurcation loci:
i.e., thesaddle-nodecurve and thesaddle-connectioncurve.
In the neighborhood of thesaddle-connectioncurve (lock-in
border), the phase-locked states and rotation-type solutions are
very close. Thus, under the influence of noise perturbations,
intermittent transitions between locked and unlocked states can
be observed. This phenomenon, known asstochastic resonance
[18], [19], has been experimentally observed in the synthe-
sizer analyzed here. The digital circuitry informing about the
synthesizer state intermittently signaledlockedand unlocked
behavior. This corresponds to transitions between a rotation
and a phase-locked limit cycle. The time-domain trajectory
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under noise perturbations for parameter values and
A (very close to a saddle connection) is shown in

Fig. 15. The short-duration phase locking takes place in the
dense intervals located about . The system then moves
to the rotation solution, returning after a short time interval to
the phase-locked state. This gives rise to a great increase in
the noise-power spectral density, as shown in the simulated
spectrum of Fig. 16(a), obtained at the frequency divider
output. Fig. 16(b) shows the measured spectrum at the VCO
output for the same operation conditions.

Note that the analysis of the stochastic resonance is impos-
sible under system-linearization conditions. The linearization
assumes a small variation of the system state variables under
the noise perturbation. Close to a bifurcation point, this is no
longer true, as in the example of Fig. 15.

V. CONCLUSIONS

A global analysis of the nonlinear dynamics of microwave
frequency synthesizers based on type-II PLLs has been pre-
sented. The analysis is based on a realistic description of the
synthesizer elements, which has enabled the accurate determi-
nation of its operating borders and, thus, the prediction of hys-
teresis phenomena. Two different kinds of PD have been con-
sidered: i.e., a digital PD, based on a JK flip-flop, and a typ-
ical analog mixer. The performances of both are compared in
terms of stability and spurious components in the output spec-
trum. Prediction of incidental FM noise is also carried out. Its
influence on the VCO output spectrum is quantified by means of
a nonlinear analysis of the synthesizer, in the presence of noise
perturbations. This nonlinear analysis has enabled the detection
of stochastic resonance in type-II loop synthesizers, commonly
observed in practice. The analysis results have been compared
with the experimental ones in a synthesizer based on a 2–3-GHz
VCO.
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